
# Network Centric Operations & Integration Systems Wing



# Technical Challenges in Military Airborne Networking



U.S. AIR FORCE

Len Schiavone, GIGSG/NA (MITRE)
Electronic Systems Center
Hanscom AFB, MA
<a href="mailto:lschiavo@mitre.org">lschiavo@mitre.org</a>
29 June 2005

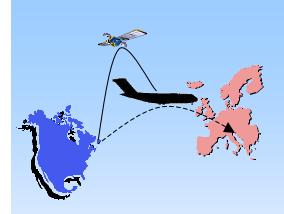
Approved for Public Release; Distribution Unlimited. Ref # 05-0226.

NOTICE: This technical data was produced for the U. S. Government under Contract No. FA8721-05-C-0001, and is subject to the Rights in Technical Data-Noncommercial Items clause at (DFARS) 252.227-7013 (NOV 1995).





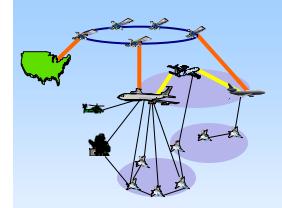
- Airborne Network Architecture
- Network Infrastructure Challenges
- Impact of Air-to-Air Link Performance
- Mobility Considerations
- Integration with Space and Surface Networks




# Airborne Mission Profiles Correspond to Levels of War



#### Strategic


#### **En-Route Configuration**



- Airlift En-Route to Theater
- B-2 En-Route to Theater
- Global Mission
- Beyond Line of Sight of Surface Nodes

#### **Operational**

# Command & Control (C2) Constellation Configuration



- Global Strike Task Force in Persistence Phase
- Theater Mission
- Line of Sight of Many Nodes

#### **Tactical**

# Strike Package Configuration



- Global Strike Task Force in Kick-Down-Door Phase
- Fighters, Attack, Bombers, Munitions
- Beyond Line of Sight of C2 Assets



# Airborne Network Satisfies Broad Range of Technical Requirements

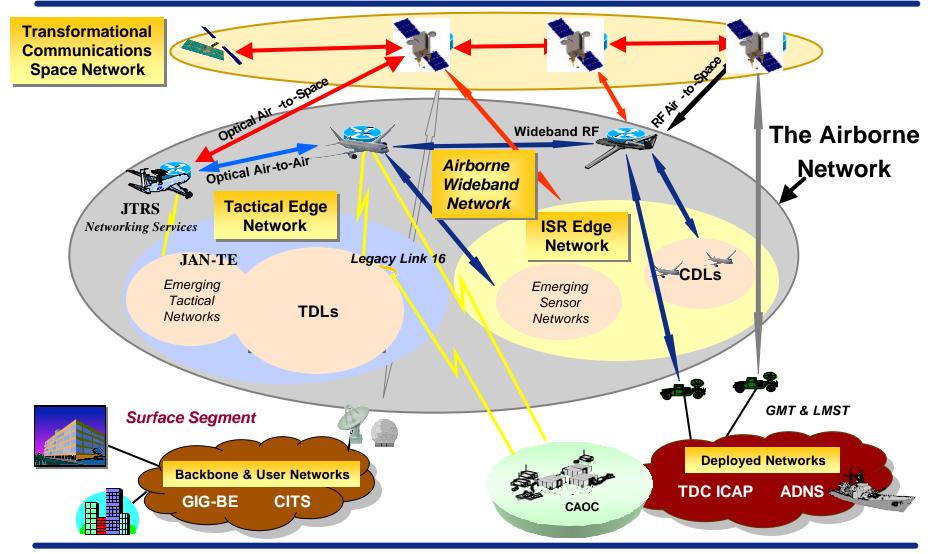


#### Network Structure

- Self-forming, self-organizing, self-healing
- Fast formation and organization join, leave, reorganize quickly

### Information Transport Performance

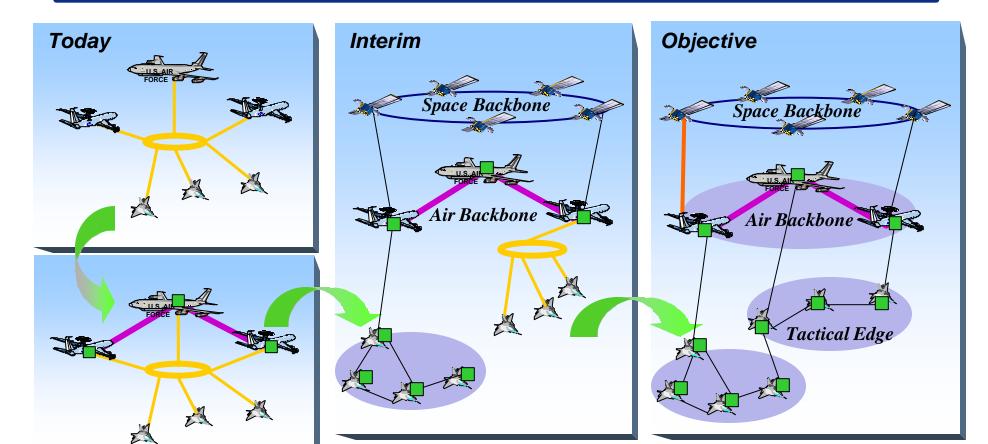
- Very short transport latency to normal latencies to best effort
- Assured delivery of information delivered correctly within expected time period
- Special Case receive-only mode platforms
- Intra-network range
  - Line-of-sight as well as beyond-line-of-sight intra-networking


### Integration with the Global Information Grid (GIG)

- AN will provide Joint airborne connectivity for USAF's ConstellationNet, Army's LandWarNet, and Navy's ForceNet
- Enables reachback connections anywhere on the GIG
- GIG mandates (i.e., IPv6, XML) apply to the AN






#### Airborne Network Vision





# ed 🌉

# AN Architecture Will Be Achieved Through Engineered Evolution

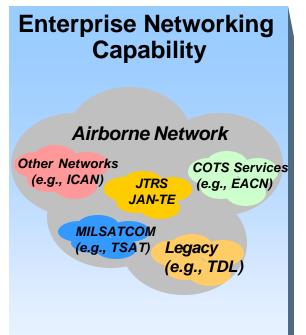




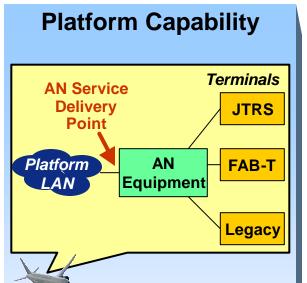
Ad-hoc networks using Joint Tactical Radio System (JTRS) Networking Services






- Airborne Network Architecture
- Network Infrastructure Challenges
- Impact of Air-to-Air Link Performance
- Mobility Considerations
- Integration with Space and Surface Networks




#### Network Infrastructure Challenges




# Airborne Network is More Than a New Link Technology



- AN provides connectivity as a network of networks
- AN provides not only connectivity, but also IA, network management, network services (e.g., DNS) and network planning overlays



- AN provides single network service delivery point for platforms with multiple radios
- AN provides guidance and standards for platform LAN implementations
- Potential for common product acquisition



- AN provides infrastructure products to extend network service
- AN provides standard packages for BLOS and/ or Hi-Capacity Airborne Points-of-Presence



#### Network Infrastructure Challenges

# Airborne Platforms Carry the Airborne Network Infrastructure



- Every node is a potential routing node
  - Routing may be disabled on certain platforms when needed
- Frequently operating disconnected from the GIG and the enterprise infrastructure
- Platforms must carry most (maybe all) network management, information assurance, DNSs, and info directories
- AN capabilities are defined dynamically based upon the individual networking capabilities of each platform
  - Early AN implementations will be planned in detail
  - Future AN will be dynamically "composable"





- Airborne Network Architecture
- Network Infrastructure Challenges
- Impact of Air-to-Air Link Performance
- Mobility Considerations
- Integration with Space and Surface Networks



#### Impact of Air-to-Air Link Performance



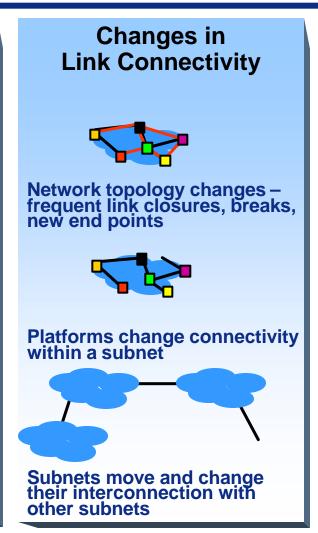
# Assumptions Made for Internet Links Do Not Apply to AN Links

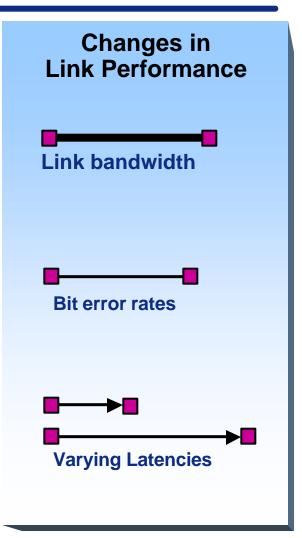
| Link<br>Attribute | Terrestrial<br>Internet                                      | Airborne Network                                                                                                        | Networking<br>Impacts             |
|-------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Bandwidth         | Infinite – can<br>add more fiber<br>and routers as<br>needed | Constrained by available spectrum in a geographic region Function of distance, antenna gain, power levels, interference | Routing performance               |
| Bit Error<br>Rate | 10 <sup>-9</sup> to 10 <sup>-12</sup> , fairly constant      | 10 <sup>-5</sup> to 10 <sup>-7</sup> , highly variable due to distance, fading, EMI                                     | End-to-end reliable transport     |
| Stability         | Generally long periods (days) of availability                | Short periods (minutes, seconds) of availability the norm                                                               | Routing performance (convergence) |
| Threat            | Generally few (e.g., backhoe)                                | Highly exposed to EMI and intentional jamming                                                                           | Network capacity                  |
| Directionality    | Bidirectional                                                | May be unidirectional (e.g., different power levels) Receive-only nodes                                                 | Protocol algorithms               |
| Latency           | Constant based upon link length                              | Variable over time as link length changes                                                                               | Synchronized applications         |





- Airborne Network Architecture
- Network Infrastructure Challenges
- Impact of Air-to-Air Link Performance
- Mobility Considerations
- Integration with Space and Surface Networks





#### **Mobility Considerations**



# AN Subscribers and Infrastructure are Dynamic









# Mobility Considerations Challenges of Mobility



### Routing

- New scalable routing algorithms incurring minimal overhead
- New routing paradigms that do not require convergence
- Direct use of link state information from smart radio terminals
- Use of node state information, including geographic location, gathered through monitoring the local neighborhood

### Dynamic Management of Addresses

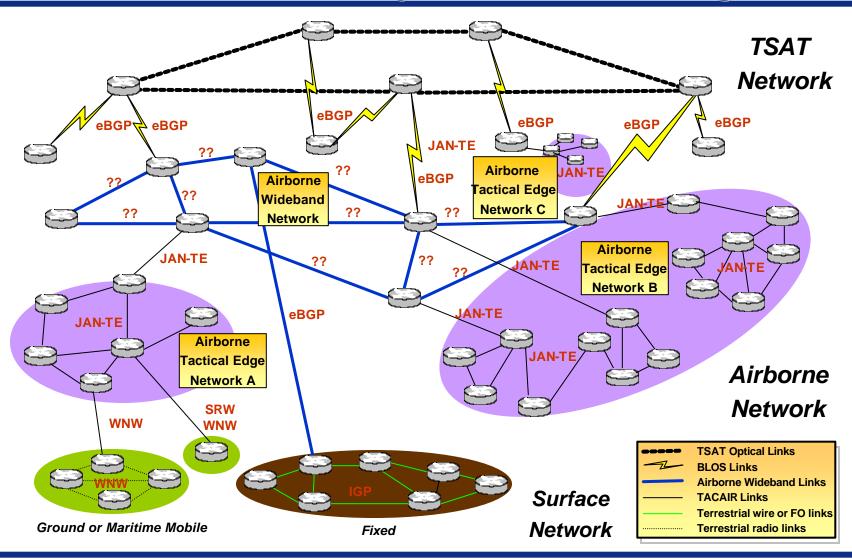
- Assignment of addresses
- Dynamic correlation of unique node identity to its current address

#### Information Assurance

- Discovery of red-side routers as black-side addresses change
- Maintaining security associations as addresses change






- Airborne Network Architecture
- Network Infrastructure Challenges
- Impact of Air-to-Air Link Performance
- Mobility Considerations
- Integration with Space and Surface Networks



#### Integration with Space and Surface Networks



# Integration of Mobile and Static Autonomous Systems - Routing





# Integration with Space and Surface Networks Integration Includes All Aspects of the Airborne Network



### Network Management

- Integration with NMs of other autonomous systems
- Integration into higher-order management structures

#### Information Assurance

- End-to-end encryption, key management infrastructure
- Public key infrastructure
- Integrated attack sensing, warning, and response

#### Network Services

- Domain Name Servers
- Network Directories

Many of these areas are being addressed by OSD/NII's GIG End-to-end Working Groups



# Summary



- Assumptions made for the Internet do not apply to the Airborne Network
  - Airborne Network's infrastructure is dynamically "composable"
  - Link performance is extremely dynamic
  - Network composition and structure is very dynamic
  - No precedent for end-to-end integration of airborne networks with space and terrestrial networks
- Airborne Network cannot rely on a simple technology transfer to satisfy all its requirements

New networking concepts and paradigms are needed to address technology gaps